Thursday, 10 January 2013

Vibration

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. The oscillations may be periodic such as the motion of a pendulum or random such as the movement of a tire on a gravel road.
Vibration is occasionally "desirable". For example the motion of a tuning fork, the reed in a woodwind instrument or harmonica, or mobile phones or the cone of a loudspeaker is desirable vibration, necessary for the correct functioning of the various devices.
More often, vibration is undesirable, wasting energy and creating unwanted soundnoise. For example, the vibrational motions of engines, electric motors, or any mechanical device in operation are typically unwanted. Such vibrations can be caused by imbalances in the rotating parts, uneven friction, the meshing of gear teeth, etc. Careful designs usually minimize unwanted vibrations.
The study of sound and vibration are closely related. Sound, or "pressure waves", are generated by vibrating structures (e.g. vocal cords); these pressure waves can also induce the vibration of structures (e.g. ear drum). Hence, when trying to reduce noise it is often a problem in trying to reduce vibration.
One of the possible modes of vibration of a circular drum (see other modes).
One of the possible modes of vibration of a cantilevered I-beam.

Contents

  • 1 Types of vibration
  • 2 Vibration testing
  • 3 Vibration analysis
    • 3.1 Free vibration without damping
      • 3.1.1 What causes the system to vibrate: from conservation of energy point of view
    • 3.2 Free vibration with damping
      • 3.2.1 Damped and undamped natural frequencies
    • 3.3 Forced vibration with damping
      • 3.3.1 What causes resonance?
      • 3.3.2 Applying "complex" forces to the mass–spring–damper model
      • 3.3.3 Frequency response model
  • 4 Multiple degrees of freedom systems and mode shapes
    • 4.1 Eigenvalue problem
    • 4.2 Illustration of a multiple DOF problem
    • 4.3 Multiple DOF problem converted to a single DOF problem
  • 5 See also
  • 6 References
  • 7 Further reading
  • 8 External links

Types of vibration

Free vibration occurs when a mechanical system is set off with an initial input and then allowed to vibrate freely. Examples of this type of vibration are pulling a child back on a swing and then letting go or hitting a tuning fork and letting it ring. The mechanical system will then vibrate at one or more of its "natural frequency" and damp down to zero.
Forced vibration is when an alternating force or motion is applied to a mechanical system. Examples of this type of vibration include a shaking washing machine due to an imbalance, transportation vibration (caused by truck engine, springs, road, etc.), or the vibration of a building during an earthquake. In forced vibration the frequency of the vibration is the frequency of the force or motion applied, with order of magnitude being dependent on the actual mechanical system.

Vibration testing

Vibration testing is accomplished by introducing a forcing function into a structure, usually with some type of shaker.[1] Alternately, a DUT (device under test) is attached to the "table" of a shaker. For relatively low frequency forcing, servohydraulic (electrohydraulic) shakers are used. For higher frequencies, electrodynamic shakers are used. Generally, one or more "input" or "control" points located on the DUT-side of a fixture is kept at a specified acceleration.[2] Other "response" points experience maximum vibration level (resonance) or minimum vibration level (anti-resonance).
Two typical types of vibration tests performed are random- and sine test. Sine (one-frequency-at-a-time) tests are performed to survey the structural response of the device under test (DUT). A random (all frequencies at once) test is generally considered to more closely replicate a real world environment, such as road inputs to a moving automobile.
Most vibration testing is conducted in a single DUT axis at a time, even though most real-world vibration occurs in various axes simultaneously. MIL-STD-810G, released in late 2008, Test Method 527, calls for multiple exciter testing.

Vibration analysis

The fundamentals of vibration analysis can be understood by studying the simple massspringdamper model. Indeed, even a complex structure such as an automobile body can be modeled as a "summation" of simple mass–spring–damper models. The mass–spring–damper model is an example of a simple harmonic oscillator. The mathematics used to describe its behavior is identical to other simple harmonic oscillators such as the RLC circuit.
Note: In this article the step by step mathematical derivations will not be included, but will focus on the major equations and concepts in vibration analysis. Please refer to the references at the end of the article for detailed derivations.

Free vibration without damping

Simple Mass Spring Model
To start the investigation of the mass–spring–damper we will assume the damping is negligible and that there is no external force applied to the mass (i.e. free vibration). The force applied to the mass by the spring is proportional to the amount the spring is stretched "x" (we will assume the spring is already compressed due to the weight of the mass). The proportionality constant, k, is the stiffness of the spring and has units of force/distance (e.g. lbf/in or N/m). The negative sign indicates that the force is always opposing the motion of the mass attached to it:

F_s=- k x. \!
The force generated by the mass is proportional to the acceleration of the mass as given by Newton’s second law of motion :
 
\Sigma\ F = ma = m \ddot{x} = m \frac{d^2x}{dt^2}.
The sum of the forces on the mass then generates this ordinary differential equation:   \ m \ddot{x} + k x = 0.
Simple harmonic motion of the mass–spring system
If we assume that we start the system to vibrate by stretching the spring by the distance of A and letting go, the solution to the above equation that describes the motion of mass is:

x(t) =  A \cos (2 \pi f_n  t). \!
This solution says that it will oscillate with simple harmonic motion that has an amplitude of A and a frequency of fn. The number fn is one of the most important quantities in vibration analysis and is called the undamped natural frequency. For the simple mass–spring system, fn is defined as:

f_n = {1\over {2 \pi}} \sqrt{k \over m}. \!
Note: Angular frequency ω (ω=2 π f) with the units of radians per second is often used in equations because it simplifies the equations, but is normally converted to “standard” frequency (units of Hz or equivalently cycles per second) when stating the frequency of a system. If you know the mass and stiffness of the system you can determine the frequency at which the system will vibrate once it is set in motion by an initial disturbance using the above stated formula. Every vibrating system has one or more natural frequencies that it will vibrate at once it is disturbed. This simple relation can be used to understand in general what will happen to a more complex system once we add mass or stiffness. For example, the above formula explains why when a car or truck is fully loaded the suspension will feel ″softer″ than unloaded because the mass has increased and therefore reduced the natural frequency of the system.

What causes the system to vibrate: from conservation of energy point of view

Vibrational motion could be understood in terms of conservation of energy. In the above example we have extended the spring by a value of x and therefore have stored some potential energy (\tfrac {1}{2} k x^2) in the spring. Once we let go of the spring, the spring tries to return to its un-stretched state (which is the minimum potential energy state) and in the process accelerates the mass. At the point where the spring has reached its un-stretched state all the potential energy that we supplied by stretching it has been transformed into kinetic energy (\tfrac {1}{2} m v^2). The mass then begins to decelerate because it is now compressing the spring and in the process transferring the kinetic energy back to its potential. Thus oscillation of the spring amounts to the transferring back and forth of the kinetic energy into potential energy. In our simple model the mass will continue to oscillate forever at the same magnitude, but in a real system there is always something called damping that dissipates the energy, eventually bringing it to rest.

Free vibration with damping

Mass Spring Damper Model
We now add a "viscous" damper to the model that outputs a force that is proportional to the velocity of the mass. The damping is called viscous because it models the effects of an object within a fluid. The proportionality constant c is called the damping coefficient and has units of Force over velocity (lbf s/ in or N s/m).

F_d  =  - c v  = - c \dot{x} =  - c \frac{dx}{dt}. \!
By summing the forces on the mass we get the following ordinary differential equation:
m \ddot{x} + { c } \dot{x} + {k } x = 0.
The solution to this equation depends on the amount of damping. If the damping is small enough the system will still vibrate, but eventually, over time, will stop vibrating. This case is called underdamping – this case is of most interest in vibration analysis. If we increase the damping just to the point where the system no longer oscillates we reach the point of critical damping (if the damping is increased past critical damping the system is called overdamped). The value that the damping coefficient needs to reach for critical damping in the mass spring damper model is:
c_c= 2 \sqrt{k m}.
To characterize the amount of damping in a system a ratio called the damping ratio (also known as damping factor and % critical damping) is used. This damping ratio is just a ratio of the actual damping over the amount of damping required to reach critical damping. The formula for the damping ratio (\zeta ) of the mass spring damper model is:
\zeta = { c \over 2 \sqrt{k m} }.
For example, metal structures (e.g. airplane fuselage, engine crankshaft) will have damping factors less than 0.05 while automotive suspensions in the range of 0.2–0.3.
The solution to the underdamped system for the mass spring damper model is the following:
x(t)=X  e^{-\zeta \omega_n t} \cos({\sqrt{1-\zeta^2} \omega_n t - \phi}) , \qquad \omega_n= 2\pi f_n.
Free vibration with 0.1 and 0.3 damping ratio
The value of X, the initial magnitude, and  \phi, the phase shift, are determined by the amount the spring is stretched. The formulas for these values can be found in the references.

Damped and undamped natural frequencies

The major points to note from the solution are the exponential term and the cosine function. The exponential term defines how quickly the system “damps” down – the larger the damping ratio, the quicker it damps to zero. The cosine function is the oscillating portion of the solution, but the frequency of the oscillations is different from the undamped case.
The frequency in this case is called the "damped natural frequency",  f_d, and is related to the undamped natural frequency by the following formula:
f_d= f_n\sqrt{1-\zeta^2}.\,
The damped natural frequency is less than the undamped natural frequency, but for many practical cases the damping ratio is relatively small and hence the difference is negligible. Therefore the damped and undamped description are often dropped when stating the natural frequency (e.g. with 0.1 damping ratio, the damped natural frequency is only 1% less than the undamped).
The plots to the side present how 0.1 and 0.3 damping ratios effect how the system will “ring” down over time. What is often done in practice is to experimentally measure the free vibration after an impact (for example by a hammer) and then determine the natural frequency of the system by measuring the rate of oscillation as well as the damping ratio by measuring the rate of decay. The natural frequency and damping ratio are not only important in free vibration, but also characterize how a system will behave under forced vibration.

Forced vibration with damping

In this section we will see the behavior of the spring mass damper model when we add a harmonic force in the form below. A force of this type could, for example, be generated by a rotating imbalance.
F= F_0 \cos {(2 \pi f t)}. \!
If we again sum the forces on the mass we get the following ordinary differential equation:
m \ddot{x} + { c } \dot{x} + {k } x = F_0 \cos {(2 \pi f t)}.
The steady state solution of this problem can be written as:
x(t)= X \cos {(2 \pi f t -\phi)}. \!
The result states that the mass will oscillate at the same frequency, f, of the applied force, but with a phase shift  \phi.
The amplitude of the vibration “X” is defined by the following formula.
X= {F_0 \over k} {1 \over \sqrt{(1-r^2)^2 + (2 \zeta r)^2}}.
Where “r” is defined as the ratio of the harmonic force frequency over the undamped natural frequency of the mass–spring–damper model.
r=\frac{f}{f_n}.
The phase shift, \phi, is defined by the following formula.
\phi= \arctan {\left (\frac{2 \zeta r}{1-r^2} \right)}.
Forced Vibration Response
The plot of these functions, called "the frequency response of the system", presents one of the most important features in forced vibration. In a lightly damped system when the forcing frequency nears the natural frequency (r \approx 1 ) the amplitude of the vibration can get extremely high. This phenomenon is called resonance (subsequently the natural frequency of a system is often referred to as the resonant frequency). In rotor bearing systems any rotational speed that excites a resonant frequency is referred to as a critical speed.
If resonance occurs in a mechanical system it can be very harmful – leading to eventual failure of the system. Consequently, one of the major reasons for vibration analysis is to predict when this type of resonance may occur and then to determine what steps to take to prevent it from occurring. As the amplitude plot shows, adding damping can significantly reduce the magnitude of the vibration. Also, the magnitude can be reduced if the natural frequency can be shifted away from the forcing frequency by changing the stiffness or mass of the system. If the system cannot be changed, perhaps the forcing frequency can be shifted (for example, changing the speed of the machine generating the force).
The following are some other points in regards to the forced vibration shown in the frequency response plots.
  • At a given frequency ratio, the amplitude of the vibration, X, is directly proportional to the amplitude of the force F_0 (e.g. if you double the force, the vibration doubles)
  • With little or no damping, the vibration is in phase with the forcing frequency when the frequency ratio r < 1 and 180 degrees out of phase when the frequency ratio r > 1
  • When r ≪ 1 the amplitude is just the deflection of the spring under the static force F_0. This deflection is called the static deflection \delta_{st}. Hence, when r ≪ 1 the effects of the damper and the mass are minimal.
  • When r ≫ 1 the amplitude of the vibration is actually less than the static deflection \delta_{st}. In this region the force generated by the mass (F = ma) is dominating because the acceleration seen by the mass increases with the frequency. Since the deflection seen in the spring, X, is reduced in this region, the force transmitted by the spring (F = kx) to the base is reduced. Therefore the mass–spring–damper system is isolating the harmonic force from the mounting base – referred to as vibration isolation. Interestingly, more damping actually reduces the effects of vibration isolation when r ≫ 1 because the damping force (F = cv) is also transmitted to the base.
  • whatever the damping is , the vibration is 90 degrees out of phase with the forcing frequency when the frequency ratio r =1 ,which is very helpful when it comes to determining the natural frequency of the system.
  • whatever the damping is ,when r ≫1, the vibration is 180 degrees out of phase with the forcing frequency
  • whatever the damping is ,when r ≪ 1, the vibration is in phase with the forcing frequency

What causes resonance?

Resonance is simple to understand if you view the spring and mass as energy storage elements – with the mass storing kinetic energy and the spring storing potential energy. As discussed earlier, when the mass and spring have no external force acting on them they transfer energy back and forth at a rate equal to the natural frequency. In other words, if energy is to be efficiently pumped into both the mass and spring the energy source needs to feed the energy in at a rate equal to the natural frequency. Applying a force to the mass and spring is similar to pushing a child on swing, you need to push at the correct moment if you want the swing to get higher and higher. As in the case of the swing, the force applied does not necessarily have to be high to get large motions; the pushes just need to keep adding energy into the system.
The damper, instead of storing energy, dissipates energy. Since the damping force is proportional to the velocity, the more the motion, the more the damper dissipates the energy. Therefore a point will come when the energy dissipated by the damper will equal the energy being fed in by the force. At this point, the system has reached its maximum amplitude and will continue to vibrate at this level as long as the force applied stays the same. If no damping exists, there is nothing to dissipate the energy and therefore theoretically the motion will continue to grow on into infinity.

Applying "complex" forces to the mass–spring–damper model

In a previous section only a simple harmonic force was applied to the model, but this can be extended considerably using two powerful mathematical tools. The first is the Fourier transform that takes a signal as a function of time (time domain) and breaks it down into its harmonic components as a function of frequency (frequency domain). For example, let us apply a force to the mass–spring–damper model that repeats the following cycle – a force equal to 1 newton for 0.5 second and then no force for 0.5 second. This type of force has the shape of a 1 Hz square wave.
How a 1 Hz square wave can be represented as a summation of sine waves(harmonics) and the corresponding frequency spectrum. Click and go to full resolution for an animation
The Fourier transform of the square wave generates a frequency spectrum that presents the magnitude of the harmonics that make up the square wave (the phase is also generated, but is typically of less concern and therefore is often not plotted). The Fourier transform can also be used to analyze non-periodic functions such as transients (e.g. impulses) and random functions. With the advent of the modern computer the Fourier transform is almost always computed using the Fast Fourier Transform (FFT) computer algorithm in combination with a window function.
In the case of our square wave force, the first component is actually a constant force of 0.5 newton and is represented by a value at "0" Hz in the frequency spectrum. The next component is a 1 Hz sine wave with an amplitude of 0.64. This is shown by the line at 1 Hz. The remaining components are at odd frequencies and it takes an infinite amount of sine waves to generate the perfect square wave. Hence, the Fourier transform allows you to interpret the force as a sum of sinusoidal forces being applied instead of a more "complex" force (e.g. a square wave).
In the previous section, the vibration solution was given for a single harmonic force, but the Fourier transform will in general give multiple harmonic forces. The second mathematical tool, "the principle of superposition", allows you to sum the solutions from multiple forces if the system is linear. In the case of the spring–mass–damper model, the system is linear if the spring force is proportional to the displacement and the damping is proportional to the velocity over the range of motion of interest. Hence, the solution to the problem with a square wave is summing the predicted vibration from each one of the harmonic forces found in the frequency spectrum of the square wave.

Frequency response model

We can view the solution of a vibration problem as an input/output relation – where the force is the input and the output is the vibration. If we represent the force and vibration in the frequency domain (magnitude and phase) we can write the following relation:
X(i\omega)=H(i\omega)\cdot F(i\omega) \ \ or \ \ H(i\omega)= {X(i\omega) \over F(i\omega)}.
H(i\omega) is called the frequency response function (also referred to as the transfer function, but not technically as accurate) and has both a magnitude and phase component (if represented as a complex number, a real and imaginary component). The magnitude of the frequency response function (FRF) was presented earlier for the mass–spring–damper system.
|H(i\omega)|=\left |{X(i\omega) \over F(i\omega)} \right|= {1 \over k} {1 \over \sqrt{(1-r^2)^2 + (2 \zeta r)^2}},   where    r=\frac{f}{f_n}=\frac{\omega}{\omega_n}.
The phase of the FRF was also presented earlier as:
\angle H(i\omega)= -\arctan {\left (\frac{2 \zeta r}{1-r^2} \right)}.
For example, let us calculate the FRF for a mass–spring–damper system with a mass of 1 kg, spring stiffness of 1.93 N/mm and a damping ratio of 0.1. The values of the spring and mass give a natural frequency of 7 Hz for this specific system. If we apply the 1 Hz square wave from earlier we can calculate the predicted vibration of the mass. The figure illustrates the resulting vibration. It happens in this example that the fourth harmonic of the square wave falls at 7 Hz. The frequency response of the mass–spring–damper therefore outputs a high 7 Hz vibration even though the input force had a relatively low 7 Hz harmonic. This example highlights that the resulting vibration is dependent on both the forcing function and the system that the force is applied to.
Frequency response model
The figure also shows the time domain representation of the resulting vibration. This is done by performing an inverse Fourier Transform that converts frequency domain data to time domain. In practice, this is rarely done because the frequency spectrum provides all the necessary information.
The frequency response function (FRF) does not necessarily have to be calculated from the knowledge of the mass, damping, and stiffness of the system, but can be measured experimentally. For example, if you apply a known force and sweep the frequency and then measure the resulting vibration you can calculate the frequency response function and then characterize the system. This technique is used in the field of experimental modal analysis to determine the vibration characteristics of a structure.

Source : Wikipedia http://en.wikipedia.org/wiki/Vibration

CURSUL BNR: Leul se apreciază semnificativ


Leul

          Un curs inferior celui de joi a fost publicat de banca centrală la 27 aprilie, de 4,3747 lei/euro. În sesiunea precedentă, cursul s-a plasat la 4,4086 lei/euro.
Pentru dolarul american, banca centrală a anunţat o rată de schimb în scădere cu 3,35 bani, 3,3393 lei/dolar.

             Rata de referinţă pentru francul elveţian a scăzut de la 3,6465 lei/franc la 3,6191 lei/franc. Rata oficială de joi reprezintă şi pentru franc nivelul minim din 15 mai 2012, dată când francul a fost cotat la 3,6063 lei.
             Cursurile de referinţă leu/dolar şi leu/franc sunt calculate de Banca Naţională a României în funcţie de paritatea leu/euro şi ratele de schimb euro/dolar şi euro/franc.

           La deschidere euro a fost la 4,3925 - 4,3950 lei, cu 1,6 - 1,65 bani sub cotaţiile de miercuri din jurul orei 16:30, de 4,4090 - 4,4110 lei/euro.
           Dealerii cred ca aprecierea este susţinută de aşteptările pozitive privind licitaţia pentru vânzarea de titluri de stat programată pentru joi de Finanţe, având în vedere că la precedentele licitaţii sumele atrase au fost peste nivelurile programate.
Totodată, dealerii nu exclud intervenţia indirectă a băncii centrale. "Se pare că BNR ar încerca să tempereze aprecierea accelerată a leului, prin cumpărări de euro", a spus un dealer.

            Dobânzile afişate joi de băncile comerciale pentru sumele atrase (ROBID) şi plasate (ROBOR) pe termen de o zi au urcat uşor, de la 5,28 - 5,78% la 5,3 - 5,8% pe an. În acelaşi timp, dobânzile pentru plasamentele cu scadenţă la o săptămână au rămas la 5,36 - 5,86% pe an.

Citeste mai mult pe REALITATEA.NET.

Codul rutier 2013 modificat intră în vigoare din 19 ianuarie. Vezi toate schimbările

Modificări aduse de Noul Cod Rutier
  •     Mopedul este considerat autovehicul şi este impusă regula obţinerii permisului de conducere pentru această categorie de autovehicule;
  •     Examenul medical, ce trebuie efectuat de orice șofer la momentul preschimbării permisului;
  •     Valabilitatea permiselor de conducere este redusă pentru profesionişti la 5 ani;
  •     Vârstele minime pentru obţinerea permisului de conducere în funcţie de categorie este de 16, 18, 20, 21 şi 24 ani;
  •     Sunt desfiinţate subcategoriile de vehicule şi se echivalează cu categoriile (ca noutate categoria AM – mopede)
  •     permisele de conducere eliberate pentru orice categorie sunt valabile pentru vehiculele din categoria AM;
  •     obligativitatea conducătorilor de vehicule implicați într-un accident de circulație în urma căruia a rezultat numai avarierea vehiculelor și/sau alte pagube materiale de a se prezenta la unitatea de poliție competentă pe raza căreia s-a produs accidentul, în termen de cel mult 24 de ore de la producerea evenimentului, pentru întocmirea documentelor de constatare;
Persoanele  cu domiciliul sau reşedinţa în România sau care dovedesc că se află la studii în România pentru o perioadă de cel puţin 6 luni pot solicita obţinerea permisului de conducere autorităţilor competente să le examineze;
În cazul pierderii, furtului sau al deteriorării permiselor de conducere ori a schimbării numelui titularului, autorităţile competente eliberează, după caz, un duplicat a cărui valabilitate nu poate depăşi valabilitatea administrativă a documentului înlocuit sau alt permis de conducere;
Eliberarea unui nou permis de conducere în cazul pierderii, furtului, deteriorării, schimbării numelui titularului precum şi în cazul expirării perioadei de valabilitate se realizează fără susţinerea unui nou examen.

Suspendarea dreptului de a conduce autovehicule

În cazul permiselor suspendate conducătorii auto vizați de această măsură trebuie să se prezinte la serviciul poliției rutiere care îl are în evidență, pentru verificarea cunoașterii regulilor de circulație, după cum urmează:

  •     când permisul de conducere i-a fost reținut pentru consum de băuturi alcoolice, sau pentru nerespectarea regulilor referitoare la prioritatea de trecere, depășirea sau trecerea la culoarea roșie  a semaforului, dacă prin aceasta s-a produs un accident de circulație din care a rezultat avarierea unui vehicul sau alte pagube materiale;
  •     când fapta a fost urmărită ca infracțiune prevazută de prezenta ordonanță de urgență, iar instanța de judecată sau procurorul a dispus înlocuirea răspunderii penale cu una dintre sancțiunile cu caracter administrativ prevăzute la art. 91 din Codul Penal;
  •     când a solicitat reducerea perioadei de suspendare a  exercitării dreptului de a conduce.
De asemenea, perioada de suspendare a exercitării dreptului de a conduce autovehicule ori tramvaie se prelungește cu 30 de zile, dacă titularul permisului de conducere nu promovează testul de cunoaștere a regulilor de circulație sau nu se prezintă la serviciul poliției rutiere pentru susținerea verificării cunoașterii regulilor de circulație.

 


Sursa: REALITATEA.NET

Wednesday, 9 January 2013

Kingston: Behold the 1-terabyte flash drive

The first 1TB flash drive.Available sometime this quarter, the DataTraveler HyperX Predator will offer a whopping terabyte of storage with USB 3.0.


Want to back up your entire computer and more on a single flash drive? You'll be able to do that courtesy of the latest gadget from Kingston.
The DataTraveler HyperX Predator 3.0 USB flash drive is currently shipping with 512 gigabytes of storage. But the next generation due out this quarter will ramp up the capacity to a full terabyte, making it the largest USB drive available on the market.
Kingston is also touting the drive as fast. With SuperSpeed USB 3.0 support, the HyperX Predator offers transfer speeds of up to 240MB per second when reading data and up to 160MB per second when writing data. And with a zinc alloy metal casing, the drive is made to be durable as well. It also comes with a five-year warranty.
The drive is compatible with a variety of operating systems, including Windows 8, Windows 7 with SP1, Windows Vista with SP1 or SP2, Windows XP with SP3, Mac OS X 10.6 or higher, and Linux 2.6 or higher.
"Our new DataTraveler HyperX Predator 3.0 allows users to store their entire digital world on a portable USB 3.0 Flash drive," Andrew Ewing, Flash memory business manager for Kingston, said in a statement. "The large capacity and fast USB 3.0 transfer speeds allow users to save time as they can access, edit, and transfer applications or files such as HD movies directly from the drive without any performance lag."
Those of you eyeing such a hefty flash drive should be prepared to spend big bucks. Kingston didn't reveal the price of the 1TB model, but the 512GB edition retails for $1,750, according to a company spokesman.
Corrected 8:00 a.m.PT to change 512MB to 512GB.


Source:Cnet.com